
STABLE GROUPS AND EXPANSIONS OF (Z,+, 0)

GABRIEL CONANT AND ANAND PILLAY

Abstract. We show that if G is a stable group of finite weight with no infinite,

infinite-index, chains of definable subgroups, then G is superstable of finite U -

rank. Combined with recent work of Palaćın and Sklinos, we conclude that
(Z,+, 0) has no proper stable expansions of finite weight. A corollary of this

result is that if P ⊆ Zn is definable in a finite dp-rank expansion of (Z,+, 0),

and (Z,+, 0, P ) is stable, then P is definable in (Z,+, 0). In particular, this
answers a question of Marker on stable expansions of the group of integers by

sets definable in Presburger arithmetic.

1. Introduction and Summary of Main Results

The work in this paper is motivated by questions surrounding first-order expan-
sions of the group (Z,+, 0), which are well-behaved with respect to some notion
of model theoretic tameness (e.g. stability or NIP). The group (Z,+, 0) is a well-
known example of a stable group, and so this program is a natural analog of the
very fruitful study of “tame” (e.g. o-minimal or NIP) expansions of the real ordered
field (R,+, ·, <, 0). Expansions of (Z,+, 0) have emerged in the context of definable
subgroups of finitely generated free groups, as well as the general growing industry
of research on ordered abelian groups satisfying notions of tameness coming from
dp-rank in NIP first-order theories (e.g. [7], [9], [24]). We will provide more detail
on these contexts toward the end of the introduction. For now, we state an explicit
question, originally asked by Marker in 2011.

Question 1.1 (Marker). Is there a set P ⊆ Zn, definable in Presburger arithmetic
(Z,+, <, 0), such that (Z,+, 0, P ) is a proper stable expansion of (Z,+, 0)?

The focus on Presburger arithmetic in the previous question is not unnatural.
Indeed, (Z,+, <, 0) is an ordered structure, and thus unstable, but is still well
understood and very well behaved model theoretically (to be precise, its theory is
NIP of dp-rank 1 [8]). Our first main result will show that, in fact, these model
theoretic notions completely control the answer to Marker’s question.

Theorem 1.2. If P ⊆ Zn is definable in a finite dp-rank expansion of (Z,+, 0),
and (Z,+, 0, P ) is stable, then P is definable in (Z,+, 0).

The notion of dp-rank in NIP theories has been an important tool in extending
the work of stability theory to the unstable stable setting (see, e.g., [23]), and so
Theorem 1.2 establishes a fundamental fact about the behavior of NIP expansions
of (Z,+, 0). The proof of this theorem will be obtained from a more general result
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on stable groups (Theorem 1.4 below), combined with the following recent result
of Palaćın and Sklinos [15].

Fact 1.3. [15] (Z,+, 0) has no proper stable expansions of finite U -rank.

Precise definitions of these notions will be given in Section 2. For now, we
emphasize that, a priori, Fact 1.3 alone is not sufficient to answer Marker’s question,
or obtain Theorem 1.2. In particular, while the dp-rank of complete stable theory is
bounded above by its U -rank, there is no further general relationship between these
two ranks. Indeed, there are stable groups of dp-rank 1 and infinite, even undefined,
U -rank (see Example 2.9). Therefore, the work involved in proving Theorem 1.2
consists of showing that if a stable expansion of (Z,+, 0) has finite dp-rank, then it
must have finite U -rank (we also show that these ranks are the same). We will in
fact obtain this conclusion from a general characterization of superstable groups of
finite U -rank, which exploits the notion of weight in stable theories. Before stating
this result, we clarify the following terminology.

Given a group G, definable in (a model of) a complete theory T , we say G
has finite dp-rank if there is a uniform finite bound on the dp-rank of any type
containing the formula defining G. If G is a stable group (i.e. if T is stable), then
the U -rank of G, denoted U(G), is the supremum of the U -ranks of types containing
a formula defining G. Replacing U -rank with weight, we similarly define the weight
of G, denoted wt(G). We let <∞ denote the partial order on groups given by:
H <∞ K if H ≤ K and [K : H] = ∞. If G is superstable of finite U -rank then,
by well-known facts, G necessarily has finite weight and no infinite <∞-chains of
definable subgroups. Our main result is that these conditions are also sufficient.

Theorem 1.4. Let G be a stable group. The following are equivalent.

(i) G is superstable of finite U -rank.
(ii) G has finite weight and no infinite <∞-chains of definable subgroups.

The proof is given in Section 3, and involves a new application of Zilber inde-
composability in the setting of weight. Theorem 1.4 quickly yields Theorem 1.2,
modulo Fact 1.3 and general results on weight and dp-rank in stable theories.

Proof of Theorem 1.2. Let G = (Z,+, 0, P ), where P ⊆ Zn is definable in a finite
dp-rank expansion of (Z,+, 0). Since dp-rank cannot increase after taking a reduct,
G has finite dp-rank n < ω. Assume G is stable. Then wt(G) = n (see [1], [14]),
and so U(G) is finite by Theorem 1.4 (in fact, U(G) = wt(G) = n by Corollary 1.5
below). By Fact 1.3, P is definable in (Z,+, 0). �

Altogether, the real content of this paper is the proof of Theorem 1.4. From the
proof of this result, we will also obtain the following corollary.

Corollary 1.5. Suppose G is a stable group of finite weight, with no infinite <∞-
chains of definable subgroups. Then there is a uniform finite bound on the length
of a <∞-chain of definable subgroups of G. Moreover, if n < ω is the length of the
longest <∞-chain of definable subgroups of G, then U(G) ≤ nwt(G).

In Section 2, we will also recall some classical examples showing that the upper
bound in this result cannot be improved in general.

We end this section with a discussion of related work and open questions. The
motivation for Question 1.1 partly arose from interest in the induced structure on
proper definable subgroups of finitely-generated free groups, which are examples of
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stable groups [21]. In particular, the maximal proper definable subgroups of such
groups are exactly the centralizers of some nontrivial element (see [16]), and thus
isomorphic as groups to (Z,+, 0). Therefore, studying stable expansions of (Z,+, 0)
was seen as an alternate approach toward the unpublished result of Perin that the
induced structure on centralizers in the free group is always a pure group. Another
proof of this has been recently given by Byron and Sklinos [4].

Beyond this connection to the free group, there has been a recent flurry of interest
in expansions of (Z,+, 0). On the stable side, we have the following ambitious
question (which is similar to a question of Goodrick quoted in [15]).

Question 1.6. Characterize the sets P ⊆ Zn, for which (Z,+, 0, P ) is stable.

On the unstable side, Dolich and Goodrick [7] have shown that (Z,+, <, 0) has no
proper strong expansions (which includes expansions of finite dp-rank). Concerning
reducts of Presburger arithmetic, a recent result of the second author [6] is that
there are no intermediate structures strictly between (Z,+, 0) and (Z,+, <, 0). In a
different direction, Kaplan and Shelah [11] show that if P = {z ∈ Z : |z| is prime}
then (Z,+, 0, P ) is unstable and, assuming a fairly strong conjecture in number
theory, (Z,+, 0, P ) is supersimple of SU -rank 1 (see also Remark 1.8(3) below).

The investigation of stable expansions of (Z,+, 0) also fits naturally into the
general question of when good properties of a structure are preserved after adding
a new predicate. For example Pillay and Steinhorn [17] proved that there are no
proper o-minimal expansions of (N, <), while Marker [12] exhibited proper strongly
minimal expansions of (N, x 7→ x+ 1). Zilber [26] showed that there are proper ω-
stable expansions of the complex field (C,+, ·, 0, 1) (in particular, adding a predicate
for the roots of unity), while Marker [13] proved that there are no proper stable
expansions of (C,+, ·, 0, 1) by a semialgebraic set.

Even more generally, Theorem 1.4 fits into the investigation of when stronger
forms of stability can be proved for stable groups satisfying various assumptions
on definable subgroups. For example, in [2], Baldwin and Pillay prove that if G is
superstable of finite U -rank, and G has no proper connected type-definable normal
subgroups, then G is ω-stable. In [10], Gagelman proves that if G is superstable of
finite U -rank and satisfies the descending chain condition on definable subgroups,
then G is ω-stable. It would be interesting to know if the finiteness conditions on
weight and U -rank in Theorem 1.4 can be relaxed to obtain a characterization of
superstable groups of a similar flavor. In particular, it is well known that if G is a
superstable group, then every type in G has finite weight (i.e. G is strongly stable)
and G has no infinite descending <∞-chains of definable subgroups (i.e. G satis-
fies the superstable descending chain condition). Therefore, we ask the following
question, which is an analog of Theorem 1.4 for superstable groups.

Question 1.7. Suppose G is a strongly stable group satisfying the superstable
descending chain condition. Is G is superstable?

We end with some important remarks.

Remark 1.8.

(1) Many of the results above on (Z,+, 0) do not hold if one considers expansions of
structures elementarily equivalent to (Z,+, 0). For example, there are models
(M,+, 0) of Th(Z,+, 0) with proper stable expansions of finite U -rank.
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(2) Theorem 1.2 also holds with inp-rank in place of dp-rank, since these ranks
coincide in the stable case (see [1]). Therefore the theorem can be applied in
the more general class of NTP2 theories.

(3) Fact 1.3 does not hold if stable is replaced by simple. For example, using results
of Chatzidakis and Pillay [5] on “generic” predicates, one can find a set P ⊆ Z
such that (Z,+, 0, P ) is unstable, but supersimple of U -rank 1.

2. Preliminaries

The purpose of this section is to collect the preliminary tools and facts that we
will need in the proof of the main result (Theorem 1.4). Our intent is to include
sufficient detail so as to make this paper accessible to a wider audience beyond those
researchers well-versed in stability theory. For example, Lemma 2.3 and Proposition
2.11 are folkloric facts, which seem to be primarily used in the superstable context,
and to not appear in the literature in more general settings. Therefore we have
included proofs suitable for the general stable case.

Throughout this section, T is a stable first-order theory, and we assume T = T eq.
We work in a sufficiently saturated monster model M of T , and use letters A,B, . . .
for small parameter sets in M, where a parameter set A is small (written A ⊂ M)
if M is |T (A)|+-saturated. In general, a cardinal κ is small or bounded if M is
κ+-saturated. We use letters X,Y, . . . for definable or type-definable sets, and we
always identify such a set X with its set of realizations X(M) in the monster model.
As usual, by a type-definable set we mean an intersection of a small collection of
definable sets. Given a type p, and a type-definable set X, we write p |= X if
p extends a type defining X. We use |̂ for nonforking independence in T . We
assume familiarity with stability and U -rank.

Definition 2.1.

(1) Given a sequence (b̄i)i∈I of tuples and C ⊂ M, we say (b̄i)i∈I is C-
independent if b̄i |̂ C{b̄j : j 6= i} for all i ∈ I.

(2) Given C ⊂M and p ∈ S(C), define the weight of p, denoted wt(p), to be
the supremum over cardinals κ for which there is B ⊇ C, a realization ā |=
p, and a B-independent sequence (b̄i)i<κ such that ā |̂

C
B and ā 6 |̂

B
b̄i

for all i < κ.
(3) Let rk denote either U -rank or weight.

(i) If ā ∈M and C ⊂M then rk(ā/C) denotes rk(tp(ā/C)).
(ii) If X is type-definable, then rk(X) = sup{rk(p) : p |= X}.

We will use the following basic properties of U -rank and weight.

Proposition 2.2. Let rk denote either U -rank or weight.

(a) Given ā ∈M and C ⊂M, rk(ā/C) = 0 if and only if ā ∈ acl(C).
(b) Fix ā, b̄ ∈ M and C ⊂ M. If ā ∈ acl(b̄, C) and b̄ ∈ acl(ā, C) then rk(ā/C) =

rk(b̄/C).
(c) Suppose X is type-definable and f is a definable function with domain contain-

ing X. Then rk(f(X)) ≤ rk(X).

Proof. These are straightforward exercises. Parts (b) and (c) follow easily from
part (a) together with Lascar’s inequality for U -rank (see [18, Theorem 19.4]), and
a sufficiently similar inequality for weight (see [22, Lemma V.3.11(2)]). �
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In a superstable theory, the weight of a type p is bounded by the sum of the
integer coefficients in the Cantor normal form of U(p) (see [18, Theorem 19.9]). In
particular, one has wt(p) ≤ U(p), which still holds for stable theories in general.

Lemma 2.3. If C ⊂M and p ∈ S(C), then wt(p) ≤ U(p).

Proof. Fix p ∈ S(C). Suppose we have a set B ⊇ C, a realization ā |= p, and a B-
independent sequence (b̄i)i<κ, for some cardinal κ, such that ā |̂

C
B and ā 6 |̂

B
b̄i

for all i < κ. We prove U(ā/B) ≥ κ, which implies U(p) ≥ κ. Given i ≤ κ,
define Bi = B ∪ {b̄j : i ≤ j} (so Bκ = B). We prove, by induction on i ≤ κ, that
U(ā/Bi) ≥ i. Given this, we will then have U(ā/B) = U(ā/Bκ) ≥ κ.

The base case is trivial; so suppose λ ≤ κ is a limit ordinal and U(ā/Bi) ≥ i for all
i < λ. For any i < λ, we have Bλ ⊆ Bi, and so U(ā/Bλ) ≥ U(ā/Bi) ≥ i. Therefore
U(ā/Bλ) ≥ λ. Finally, fix i < κ and suppose U(ā/Bi) ≥ i. Since Bi+1 |̂ B b̄i and

ā 6 |̂
B
b̄i, we have ā 6 |̂

Bi+1
b̄i by transitivity. Therefore U(ā/Bi+1) ≥ i+ 1. �

For general stable theories, Lemma 2.3 is the most one can say concerning the
relationship between weight and U -rank for arbitrary types (see Example 2.9).
However, when working “close” to types of U -rank 1, weight and U -rank coincide.
This will be a key tool in the proof of our main result.

Proposition 2.4. Fix C ⊂ M, and suppose X ⊆ M is such that U(a/C) ≤ 1 for
all a ∈ X. If b̄ is a finite tuple in acl(XC) then U(b̄/C) = wt(b̄/C).

Proof. We first consider the case that b̄ is a tuple of elements of X. The essential
observation is the following:

(†) If a ∈ X and C ⊆ B ⊆ D ⊂M then, since U(a/C) ≤ 1, we have a 6 |̂
B
D if and

only if a ∈ acl(D)\ acl(B).

In particular, by (†) and symmetry of forking, we have the following exchange
property: given a, a′ ∈ X and C ⊆ B ⊂ M, if a ∈ acl(B, a′)\ acl(B) then a′ ∈
acl(B, a). Therefore, a tuple ā ∈ X has a well-defined basis over C, and we show
U(ā/C) = dimacl(ā/C) = wt(ā/C). The first equality follows from Proposition
2.2(a) and repeated application of Lascar’s inequality. For the second equality,
it follows from (†) that a basis for ā over C is C-independent (with respect to
nonforking) and, moreover, ā 6 |̂

C
ai for any ai ∈ ā\ acl(C). Therefore wt(ā/C) ≥

dimacl(ā/C), and so equality holds by Lemma 2.3.
Now consider the general case of b̄ ∈ acl(XC). By Proposition 2.2(a), we may

assume that some coordinate of b̄ is not in acl(C). Fix ā = (a1, . . . , an) ∈ X,
algebraically independent over C, with b̄ ∈ acl(ā, C). Let k ≤ n be maximal such
that, for some i1 < . . . < ik ≤ n, we have b̄ |̂

C
(ai1 , . . . , aik) (it is possible here that

k = 0). Without loss of generality, assume b̄ |̂
C

(a1, . . . , ak). Let ā1 = (a1, . . . , ak)

and ā2 = (ak+1, . . . , an). We show ā2 ∈ acl(b̄, ā1, C). If not, then there is some
k < i ≤ n such that ai 6∈ acl(b̄, ā1, C), and so ai |̂ ā1,C b̄ by (†). Together with

ā1 |̂ C b̄, we have (ā1, ai) |̂ C b̄, contradicting the maximality of k. Altogether,

ā2 ∈ acl(b̄, ā1, C) and b̄ ∈ acl(ā2, ā1, C). By the first case above, and Proposition
2.2(b), U(b̄/C) = U(ā2/C) = wt(ā2/C) = wt(b̄/C). �

Remark 2.5. The notion of weight also behaves nicely in simple theories. For
example, after replacing all occurrences of U -rank with SU -rank, the statements



6 GABRIEL CONANT AND ANAND PILLAY

of Proposition 2.2, Lemma 2.3, and Proposition 2.4 hold when T is simple (with
identical proofs).

We now turn to stable groups. Once again, a stable group is a group G definable
in (some model of) a stable theory T . We will continue to identify the definable
set G with its realization G(M) in the monster model. Given a definable group
G, we let G0 denote the connected component of G, which is the intersection of all
definable subgroups of G of finite index. By stability (see Fact 2.6 below), G0 is
the intersection of at most |T | many definable subgroups of G of finite index, and
hence is type-definable (over the same parameters used to define G). We say G is
connected if G = G0.

We first recall the following classical results.

Fact 2.6. Let G be a stable group.

(a) (Baldwin-Saxl [19, Proposition 1.4]) Let {Hi : i ∈ I} be a family of uniformly
definable subgroups of G, and set H =

⋂
i∈I Hi. Then H =

⋂
i∈I0 Hi for some

finite I0 ⊆ I. In particular, H is definable.
(b) (Poizat [19, Theorem 5.17]) Any type-definable subgroup of G is the intersection

of at most |T | many definable subgroups of G.

Remark 2.7. Unlike the previous preliminaries, these facts on stable groups do
not immediately go through through if T is only assumed to be simple. In fact,
there are simple unstable groups where part (a) fails [25, Example 1]. On the the
other hand, whether part (b) holds for groups definable in simple theories is a well
known open question.

For the sake of clarity, it is worth making a few remarks concerning weight and
U -rank of stable groups. In particular, given a definable group G and A ⊂ M, we
let SG(A) denote the space of complete types, over parameters in A, which contain
a formula defining G. Then, if rk denotes either U -rank or weight, we can express
rk(G) as

rk(G) = sup{rk(p) : p ∈ SG(A) for some A ⊂M}.
We say G has finite U -rank (resp. finite weight) if U(G) < ω (resp. wt(G) < ω).

If G is stable then U(p) = U(G) for any generic type p in G (see [3, Lemma
III.4.5(i)]). However, this can fail for weight. For example, it is possible that all
types in G have finite weight, but wt(G) is not finite (e.g. Example 2.9(1) below).
Since our focus is on the case that wt(G) is finite, we will not concern ourselves
with this situation.

Remark 2.8. When considering examples of stable groups, it is often the case that
the group G is the whole structure (i.e. defined by the formula x = x). Therefore,
given a group G = (G, ·, 1, . . .), when we speak of the U -rank or weight of G, we
continue to mean as calculated in a monster model according the definitions and
conventions above.

The following examples illustrate some of the possible variety concerning weight,
U -rank, and <∞-chains in stable groups.

Example 2.9.

(1) Let Π2 = {2n : n ∈ N} and let G = (Z,+, 0,Π2). Then G is superstable
of U -rank ω (see [15], [20]). Therefore, G is strongly stable, but does not
have finite weight by Theorem 1.4.
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(2) Fix an integer n > 0 and let G = (Qn,+, 0, (Hk)k<n) where, for each
k < n, Hk = Qk×{0}n−k. We have a sequence (Ek)k<n of definable equiv-
alence relations, given by Ek(x, y) ↔ x − y ∈ Hk. Let M be a monster
model. Given a, b ∈ M, let d(a, b) = min{k < n : Ek(a, b)}. Then d is
an ultrametric on M, taking values in {0, 1, . . . , n}; and nonforking inde-
pendence is characterized by: A |̂

C
B if and only if, for all a ∈ acl(AC),

d(a, acl(BC)) = d(a, acl(C)) (where algebraic closure is the same as in
(Qn,+, 0)). Using this, one may verify that G is superstable of U -rank n
and weight 1.

(3) LetG = (Qω,+, 0, (Hn)n<ω) where, for each n < ω, Hn = Qn×{0}ω. Using
a similar argument as in part (2), one may show that G is superstable of
U -rank ω and weight 1.

(4) Let G = (Qω,+, 0, (Kn)n<ω) where, for each n < ω, Hn = {0}n × Qω.
Then G is strictly stable of weight 1.

Our final preliminary tools concern indecomposable sets in stable groups.

Definition 2.10. Let G be a stable group. A type-definable set X ⊆ G is inde-
composable if, for all type-definable subgroups H ≤ G, either X/H is unbounded
or |X/H| = 1 (where X/H = {xH : x ∈ X}).

Proposition 2.11. Let G be a stable group. Fix A ⊂ M and a stationary type
p ∈ SG(A). Let X = p(M). Then X ⊆ G is indecomposable.

Proof. Let F denote the family of type-definable subgroups H ≤ G such that X/H
is bounded. Let H0 be the intersection of the elements of F . Using Fact 2.6, it is
a standard exercise to show that H0 is a type-definable subgroup of G and X/H0

is bounded (i.e. H0 ∈ F). Note also that A-invariance of X implies A-invariance
of H0, and so H0 is type-definable over A.

Let p̃ ∈ SG(M) be the unique global nonforking extension of p. Let C ⊂ X
be a bounded set such that X/H0 = {cH0 : c ∈ C}, and fix a realization u ∈ G
of p̃|AC . Then u ∈ X, and so u ∈ cH0 for some c ∈ C, which means p̃ |= cH0.
If f ∈ Aut(M/A) then, by A-invariance of H0 and p̃, we have p̃ |= f(c)H0, and
so f(cH0) = f(c)H0 = cH0. Consequently, cH0 is type-definable over A, and so
p |= cH0. Therefore X ⊆ cH0, which implies X ⊆ cH for all H ∈ F . �

A well-known result of Berline and Lascar is the Indecomposability Theorem
for superstable groups [3, Theorem V.3.1]. In order to use this result without the
assumption of superstability, we state the following corollary of its proof.

Fact 2.12. Suppose G is a stable group and {Xi : i ∈ I} is a family of in-
decomposable type-definable subsets of G, each containing 1. Given n > 0 and
σ = (i0, . . . , in) ∈ I<ω, let Xσ = Xi0 ·Xi1 · . . . ·Xin . Assume that there is a uni-
form finite bound on U(Xσ), where σ ranges over I<ω. Then

⋃
i∈I Xi generates a

connected type-definable subgroup H of G. In particular, there are i0, . . . , in such
that H = Xi0 · . . . ·Xin ·X-1

in
· . . . ·X-1

i0
.

3. Proof of the main result

Toward the proof of Theorem 1.4, the first step is to prove that if G is a stable
group of finite weight, then one may construct a type-definable subgroup of G with
several nice properties.
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Lemma 3.1. If G is an infinite stable group of finite weight then there is an infinite
connected type-definable normal subgroup H ≤ G, with U(H) = wt(H).

Proof. Fix a stationary type p ∈ SG(A), for some A ⊂M, such that U(p) = 1. For
example, choose p minimal in the fundamental order among non-algebraic types in
SG(A) (with A varying over small parameter sets in M), and then replace p by a
nonforking extension to a model.

Let Y = p(M). Then Y ⊆ G is indecomposable by Proposition 2.11. Fix some
u ∈ Y , and set X = u-1Y . Given g ∈ G, let Xg = gXg-1. Then {Xg : g ∈ G} is
a family of indecomposable type-definable subsets of G, each of which contains 1.
By Proposition 2.2(c), U(Xg) = 1 for all g ∈ G. Given a sequence σ = (g0, . . . , gn)
of elements of G, we set Xσ = Xg0 · . . . ·Xgn .

We claim that, for any σ ∈ G<ω, U(Xσ) = wt(Xσ). Suppose, for a contradiction,
that wt(Xσ) < U(Xσ), with σ = (g0, . . . , gn). Then there is a type q such that
q |= Xσ and U(q) > wt(Xσ). After taking a nonforking extension, we may assume
q ∈ S(C), where C ⊂M is such that Xgi is type-definable over C for all 0 ≤ i ≤ n.
Let a |= q. Then a ∈ Xσ, so we may write a = b0 · . . . · bn with bi ∈ Xgi .
For any 0 ≤ i ≤ n, tp(bi/C) |= Xgi by choice of C, and so U(bi/C) ≤ 1. Since
a ∈ acl(b0, . . . , bn), we have U(a/C) = wt(a/C) by Proposition 2.4. But wt(a/C) ≤
wt(Xσ), which contradicts U(a/C) = U(q) > wt(Xσ).

We have U(Xσ) ≤ wt(G) for all σ ∈ G<ω. Therefore, we may apply Fact 2.12
to conclude that

⋃
g∈GX

g generates an infinite connected type-definable subgroup

H of G, which is normal by construction. Moreover, H = Xσ for some σ ∈ G<ω,
and so U(H) = wt(H). �

Given a group G, and a normal subgroup K, we let ρG/K denote the pullback
function on subgroups of G/K, i.e., given H ≤ G/K, define ρG/K(H) = {g ∈ G :
gK ∈ H} ≤ G. The following are easy observations.

Proposition 3.2. Let G be a group and K a normal subgroup of G.

(a) If H ≤ G/K then K is a normal subgroup of ρG/K(H) and H = ρG/K(H)/K.
(b) If H1 ≤ H2 ≤ G/K then ρG/K(H1) ≤ ρG/K(H2) ≤ G and [ρG/K(H2) :

ρG/K(H1)] = [H2 : H1].

We now prove the main result.

Proof of Theorem 1.4. As mentioned in the introduction, one direction of this result
follows from standard facts. Specifically, we have already seen in Lemma 2.3 that
finite U -rank implies finite weight. Moreover, if G is superstable of finite U -rank
then it follows from Lascar’s inequality for cosets [3, Corollary III.8.2] that, in fact,
G has a uniform finite bound on the length of a <∞-chain of definable subgroups.

For the other direction, fix a stable group G of finite weight, with no infinite
<∞-chains of definable subgroups. We want to show that G is superstable of finite
U -rank. We may clearly assume G is infinite. Suppose, toward a contradiction,
that U(G) is infinite (or undefined). We inductively construct sequences (Gi)i<ω
and (Ki)i<ω of definable groups as follows.

Let K0 = {1} and set G0 = G1 = G. Fix n > 0, and suppose we have constructed
(Gi)i≤n and (Ki)i<n satisfying the following properties.

(1) For all 0 < i < n, Ki is an infinite definable normal subgroup of Gi.
(2) For all 0 < i ≤ n, Gi is infinite and equal to Gi−1/Ki−1.
(3) U(G) ≤ (n− 1) wt(G)⊕ U(Gn).
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Note that Gn is an infinite stable group and, by Proposition 2.2(c), wt(Gn) ≤
wt(G) < ω. By Lemma 3.1, we may fix an infinite connected type-definable normal
subgroup H ≤ Gn, with U(H) = wt(H).

From the assumption on <∞-chains of definable subgroups of G, along with
Proposition 3.2, it is easy to see that Gn also has no infinite <∞-chains of definable
subgroups. Since H is type-definable, it follows (with the help of Fact 2.6(b)) that
there is a definable subgroup Kn of Gn such that H ≤ Kn and [Kn : H] is bounded.
(In fact, the superstable descending chain condition is equivalent to this assertion
on type-definable subgroups.) By Fact 2.6(a) and normality of H, we may replace
Kn by

⋂
g∈G gKng

-1, and thus assume Kn is normal.
Since H is connected and type-definable, with bounded index in Kn, it follows

that H = K0
n, which implies U(H) = U(Kn) (see, e.g., [3, Sections III.4, IV,3]).

Since U(H) = wt(H), we must have U(Kn) = wt(Kn) ≤ wt(G). Let Gn+1 =
Gn/Kn. Then, using (3) and Lascar’s inequality for cosets [3, Corollary III.8.2],

U(G) ≤ (n− 1) wt(G)⊕ U(Gn)

≤ (n− 1) wt(G)⊕ U(Kn)⊕ U(Gn/Kn) ≤ nwt(G)⊕ U(Gn+1).

It therefore follows from our assumption on U(G) that Gn+1 must be infinite.
Altogether, (Gi)i≤n+1 and (Ki)i≤n satisfy (1), (2), (3) above.

We have now constructed (Gn)n<ω and (Kn)n<ω. Given n < ω, let ρn de-
note the pullback function ρGn/Kn

. Let L0 = {1} and, given n > 0, set Ln =
ρ0 . . . ρn−1(Kn). Using Proposition 3.2, it is easy to see that (Ln)n<ω is an ascend-
ing chain of definable subgroups of G and, for any n > 0, since Kn is infinite we have
Ln−1 <∞ Ln. Therefore (Ln)n<ω is an <∞-chain, which is a contradiction. �

Remark 3.3. In the previous proof, note that we needed to assume that G had
no infinite ascending or descending <∞-chains of definable groups. Specifically,
no infinite descending <∞-chains allows us to construct the definable group Kn

from the type-definable group H, which is necessary to complete the induction step
of the argument. No infinite ascending <∞-chains ensures us that the inductive
construction halts at some finite stage. The stable group described in Example
2.9(3) also illustrates the necessity of these assumptions.

Proof of Corollary 1.5. Let G be a stable group of finite weight, with no infinite
<∞-chains of definable subgroups. Then G has finite U -rank by Theorem 1.4 and
so, by Lascar’s inequality for cosets, there is a uniform finite bound on the length
of a <∞-chain of definable subgroups of G. Let n < ω be the length of the longest
<∞-chain of definable subgroups of G. Repeating the construction in the previous
proof, it follows that there must be some m ≤ n such that Gm+1 is finite (since
otherwise we would construct a <∞-chain (L0, . . . , Ln+1) of length n+ 1). �
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